Welcome to the launch of the European COVID-19 Scenario Hub! Funded by ECDC, an agency of the European Union With special thanks for the scientific leadership to LSHTM; the support from the US COVID-19 Scenario hub team, and all participating modelling teams! 25 May 2022, 15:30-16:30 CET ## **ECDC's COVID-19 Modelling Hubs** #### 2021: - European COVID-19 Forecast hub with 30+ modelling teams globally forecasting COVID-19 outcomes in Europe to inform policy advice - Focus on short-term forecasts over 1-4 weeks; ensemble forecasts from multiple models performed reliably well! ## **ECDC's COVID-19 Modelling Hubs** #### 2021: - European COVID-19 Forecast hub with 30+ modelling teams globally forecasting COVID-19 outcomes in Europe to inform policy advice - Focus on short-term forecasts over 1-4 weeks; ensemble forecasts from multiple models performed reliably well! #### **2022/Today:** European COVID-19 Scenario hub for longerterm projections of scenarios over 6-12 months to explore leading causes of uncertainty about future COVID-19 outcomes ## **ECDC's COVID-19 Modelling Hubs** #### 2021: - European COVID-19 Forecast hub with 30+ modelling teams globally forecasting COVID-19 outcomes in Europe to inform policy advice - Focus on short-term forecasts over 1-4 weeks; ensemble forecasts from multiple models performed reliably well! #### **2022/Today:** - European COVID-19 Scenario hub for longerterm projections of scenarios over 6-12 months to explore leading causes of uncertainty about future COVID-19 outcomes - Both hubs have focussed on building a collaborative community of modellers Jun Apr May ## **Event aims today & agenda** - Highlight the potential of collaborative modelling - Give context to the new European COVID-19 Scenario Hub - Reach out to modellers interested in participating | Part | Time | Topic | Speaker | |------|-------|--------------------------------------------------------------------------|-------------------------------------------| | 1 | 15:30 | Welcome and introduction | Frank Sandmann (ECDC) | | | 15:35 | European COVID-19 Forecast Hub | Sebastian Funk (LSHTM) | | | 15:40 | US COVID-19 Scenario Modelling Hub | Katriona Shea (Penn State) | | | 15:50 | European COVID-19 Scenario Hub | Katharine Sherratt (LSHTM) | | | 16:00 | Address by the Chief Scientist of ECDC | Mike Catchpole (ECDC) | | 2 | 16:05 | Q&A | All | | | 16:10 | Technical discussion with modelling teams intending to submit to Round 1 | All modellers interested in participating | ## **Address by the Director of ECDC - Dr Andrea Ammon** "The launch of the COVID-19 Scenario hub today underlines ECDC's value of using infectious disease modelling for public health decision making to strengthen Europe's health security. As we transition into new phases of the COVID-19 pandemic, the results of this hub will support ECDC's risk analysis, assessment of public health advice, and strategic planning for anticipatory action in the EU/EEA Member States in 2022/2023. This is an exciting initiative to advance scientific collaboration and our understanding of possible future developments of COVID-19. My heartfelt thanks to everyone being here today, and to everyone in the modelling community who has been engaging in ECDC's COVID-19 Forecasting and Scenario hubs." ## European Covid-19 Forecast Hub 25 May 2022 Kath Sherratt, Hugo Gruson, Sebastian Funk https://epiforecasts.io London School of Hygiene & Tropical Medicine with Helen Johnson, Rene Niehus, Rok Grah, Frank Sandmann, Bastian Prasse (ECDC) Johannes Bracher + team (KIT) Nick Reich + team (UMass-Amherst) centre for the mathematical modelling of infectious diseases ## Forecast hub set up - started in March 2021 - collates weekly forecasts (4 weeks ahead) of COVID-19 cases, hospitalisations and deaths in 32 European countries from modelling teams worldwide - 58 unique models (currently: 18) from 37 teams - ca. 5 million forecast values (incl. uncertainty) - Model inputs combined into "ensemble forecast" https://covid19forecasthub.eu - 1. Provide decision-makers and general public with reliable information about where the pandemic is headed in the next month. - 2. Gain insight into which modelling approaches do well. - 3. Assess the reliability of forecasts for different measures of disease severity. - 4. Create a community of infectious disease modelers underpinned by an open-science ethos. 1. Provide decision-makers and general public with reliable information about where the pandemic is headed in the next month. - 2. Gain insight into which modelling approaches do well. - ensemble outperforms individual models #### Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations Sherratt, K., Gruson, H., Nichus, R., Grah, R., Sandman, F., Johnson, H., Prasse, B., Ullrich, A., Wolffram, D., Deuchel, J., Boose, N.I., Srivastava, A., Mingione, M., Sheblou, D., Wang, Y., Reich, N.G., Gibson, G., Wattanachit, N., Ray, E.L., Farcomeni, A., Loricose, G., Passilini, N., Ardeughi, G., Zarelli, G., Tarantino, B., Gindici, P., Priliylova, L., Eckerosé, Y., Gogolewski, K., Gambin, A., Sacsurck, E., Alsimo Di Loco, P., Villamiceva, I., Català, M., Prats, C., Aburer, E., Alomeo, S., López, D., Roddoff, A., Zommermann, T., Bartolucci, F., Pennoni, F., Baccam, P., Gurung, B., Siage, S., Sundonki, B., Barbarosos, M.V., Pultmann, J., Hotz, T., Heyder, S., Burgard, J.P., Rakowski, F., Nedziefewski, K., Semenink, M., Adiga, A., Hurt, B., Lewis, B., Porebski, P., Venkatramanna, S., Wang, L., Marathe, M., Bartcruk, R., Zielinski, J., Radwan, M., Nowesieleki, J., Gruniel-Slomka, M., Kraus, A., Kraus, D., Dweger, F., Moszynski, A., Krups, B., Kinielowski, J., Arnarte, J.L., Pfeer Alvarer, C., Reins, B., Marastti, A., Jona Lasinio, G., Divino, F., Holger, K., Khelifetz, Y., Schola, M., Rodish, I., Lange, B. Beck, W., Kuhlmann, A., Mohring, J., Leithioser, N., Whudo, J., Schneider, J., Mohr, S., Delming, J., Priesemann, V., Abbott, S., Pottier, L., E. Singh, D., Gurman-Merino, M., Krymova, E., Tannou, D., Bejar, B., Sun, T., Oboninski, G., Li, M.L., Dimitris, B., Saksham, S., Monstero-Manno, P., Badrinioki, J., Boxlerer, J., Funk. #### Abstract Background Short-term forecasts of infectious disease burden can contribute to situational awareness and aid 3. Assess the reliability of forecasts for different measures of disease severity. - 4. Create a community of infectious disease modelers underpinned by an open-science ethos. - 58 unique models (currently: 18) from 37 teams - ca. 5 million forecast values (incl. uncertainty) - all openly available at 2 model projections ### Round 0: challenges #### Issues with the Hub set up - Few multi-country models - Limited team capacity - Quantile format prevents deeper analysis - Unclear to what extent quantile submissions blur the frequency/magnitude of epidemic cycles among many model simulations - Cannot deduce cumulative counts, so can't estimate the overall impact of each scenario - Mitigation: submissions can now use samples #### **Issues with interpretation** - Scenario specification and overlap - Waning protection: asymmetrical parameter values in terms of plausibility of optimistic and pessimistic scenarios - New variant: sensitivity to 30% immune escape? - Technical challenge of immune waning parameters - For some models this meant re-estimating transmissibility between waning scenarios #### Round 0: conclusions #### **Scientific interpretation** Results consistent with the speed of waning protection against infection as a more significant factor in future outbreaks, compared to a new variant with some immune escape #### Policy relevance Greater consideration for the timing of vaccination programmes relative to waning protection, rather than as a response to new variant introductions #### Interpret with caution: - Models intended as experimental for the pilot round, and we found substantial variation between models as well as between countries and scenarios - Results may be biased by both submission constraints and scenario confounding